Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biomed Microdevices ; 25(3): 21, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-20233873

ABSTRACT

In recent years biomedical scientific community has been working towards the development of high-throughput devices that allow a reliable, rapid and parallel detection of several strains of virus or microparticles simultaneously. One of the complexities of this problem lies on the rapid prototyping of new devices and wireless rapid detection of small particles and virus alike. By reducing the complexity of microfluidics microfabrication and using economic materials along with makerspace tools (Kundu et al. 2018) it is possible to provide an affordable solution to both the problems of high-throughput devices and detection technologies. We present the development of a wireless, standalone device and disposable microfluidics chips that rapidly generate parallel readouts for selected, possible virus variants from a nasal or saliva sample, based on motorized and non-motorized microbeads detection, and imaging processing of the motion tracks of these beads in micrometers. Microbeads and SARS-CoV-2 COVID-19 Delta variant were tested as proof-of-concept for testing the microfluidic cartridges and wireless imaging module. The Microbead Assay (MA) system kit consists of a Wi-Fi readout module, a microfluidic chip, and a sample collection/processing sub-system. Here, we focus on the fabrication and characterization of the microfluidic chip to multiplex various micrometer-sized beads for economic, disposable, and simultaneous detection of up to six different viruses, microparticles or variants in a single test, and data collection using a commercially available, Wi-Fi-capable, and camera integrated device (Fig. 1).


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Humans , Microfluidics , Microspheres , Cost-Benefit Analysis , SARS-CoV-2 , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods
2.
Cells ; 12(9)2023 05 02.
Article in English | MEDLINE | ID: covidwho-2319247

ABSTRACT

Coronavirus disease (COVID-19) causes various vascular and blood-related reactions, including exacerbated responses. The role of endothelial cells in this acute response is remarkable and may remain important beyond the acute phase. As we move into a post-COVID-19 era (where most people have been or will be infected by the SARS-CoV-2 virus), it is crucial to define the vascular consequences of COVID-19, including the long-term effects on the cardiovascular system. Research is needed to determine whether chronic endothelial dysfunction following COVID-19 could lead to an increased risk of cardiovascular and thrombotic events. Endothelial dysfunction could also serve as a diagnostic and therapeutic target for post-COVID-19. This review covers these topics and examines the potential of emerging vessel-on-a-chip technology to address these needs. Vessel-on-a-chip would allow for the study of COVID-19 pathophysiology in endothelial cells, including the analysis of SARS-CoV-2 interactions with endothelial function, leukocyte recruitment, and platelet activation. "Personalization" could be implemented in the models through induced pluripotent stem cells, patient-specific characteristics, or genetic modified cells. Adaptation for massive testing under standardized protocols is now possible, so the chips could be incorporated for the personalized follow-up of the disease or its sequalae (long COVID) and for the research of new drugs against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Endothelial Cells , Post-Acute COVID-19 Syndrome , Lab-On-A-Chip Devices
3.
Microchemical Journal ; 190:N.PAG-N.PAG, 2023.
Article in English | Academic Search Complete | ID: covidwho-2302114

ABSTRACT

[Display omitted] • Materials have an important effect on the reliability of microfluidic systems. • Magnetic particles are widely used in the fabrication of microfluidics immunosensors. • Near field communication-integrated microfluidics will more use in the future studies. The fast diagnosis of diseases is vital in the early stages of the cure of illnesses. Although conventional procedures have been broadly employed in clinics, newly presented microfluidic microchips are becoming more attractive. The benefits of the new microfluidic system involve more fast diagnosis, the need for low patient samples and reagents, user-friendly application, and high repeatability in the quantification of biomolecules. The primary aim of this review is to offer a summary of the effect of the applied nanomaterials in the fabrication of novel immunosensor-based microfluidic sticks and to carefully explore different applications of microfluidic systems in the determination of bioagents. New kinds of immunosensor-based microfluidic systems for coronavirus disease and HIV are also explored. The next types of biomedical diagnosis will mainly rely on point-of-care (POC) methods, which propose rapid and sensitive detections. However, microfluidic systems propose a high potential to fabricate reliable POC devices. [ FROM AUTHOR] Copyright of Microchemical Journal is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

4.
Micromachines (Basel) ; 12(4)2021 Apr 02.
Article in English | MEDLINE | ID: covidwho-1238911

ABSTRACT

Separation and detection are ubiquitous in our daily life and they are two of the most important steps toward practical biomedical diagnostics and industrial applications. A deep understanding of working principles and examples of separation and detection enables a plethora of applications from blood test and air/water quality monitoring to food safety and biosecurity; none of which are irrelevant to public health. Microfluidics can separate and detect various particles/aerosols as well as cells/viruses in a cost-effective and easy-to-operate manner. There are a number of papers reviewing microfluidic separation and detection, but to the best of our knowledge, the two topics are normally reviewed separately. In fact, these two themes are closely related with each other from the perspectives of public health: understanding separation or sorting technique will lead to the development of new detection methods, thereby providing new paths to guide the separation routes. Therefore, the purpose of this review paper is two-fold: reporting the latest developments in the application of microfluidics for separation and outlining the emerging research in microfluidic detection. The dominating microfluidics-based passive separation methods and detection methods are discussed, along with the future perspectives and challenges being discussed. Our work inspires novel development of separation and detection methods for the benefits of public health.

SELECTION OF CITATIONS
SEARCH DETAIL